丰满少妇人妻无码专区,国产精品无码翘臀在线观看,xx性欧美肥妇精品久久久久久,国产成人无码综合亚洲日韩

Skip to content Skip to navigation

Co-written by Chad Carlberg & Anders Karlsson
Product Specialist & Product Specialist

Thomson Industries, Inc.

www.thomsonlinear.com thomson@thomsonlinear.com

 

Thomson Industries is seeing a increasing customer demand in specifications for linear actuators for higher ingress protection (IP) ratings. At the same time there is also a greater interest in more advanced controls for this type of linear motion. What is driving these trends and how manufacturers are adapting their products in response?

For years industrial actuators have needed to survive harsh environments. The minimum environmental requirements are becoming more rigorous for applications in agriculture, construction, garden, health and fitness, medical and industrial. The IP rating system remains the same: so what is changing and why?

The IP rating specifies the degree of environmental protection an electrical enclosure has against intrusion by foreign bodies and moisture. The first digit indicates the level of protection against solid objects and the second digit indicates the level of protection against liquids.  Table 1 defines what each rating number means.

IP Rating            

First Digit

Ingress of solid objects

Second Digit

Ingress of Liquids

0

No Protection

No Protection

1

Protected against solid objects over 50mm

Protected against vertically falling drops of water or condensation

2

Protected against solid objects over 12.5mm

Protected against falling drops of water, if the case is disposed up to 15 degrees from vertical

3

Protected against solid objects over 2.5mm

Protected against sprays of water from any direction, even if the case is disposed up to 60 degrees from vertical

4

Protected against solid objects over 1.0mm

Protected against splash water from any direction

5

Limited protection against dust ingress (no harmful deposit)

Protected against low pressure water jets from any direction. Limited ingress permitted

6

Totally protected against dust ingress

Protected against high pressure water jets from any direction. Limited ingress permitted

7

N/A

Protected against short periods of immersion in water

8

N/A

Protected against long, durable periods of immersion in water

9k

N/A

Protected against close-range high pressure, high temperature spray downs

 

For dusty applications IP54 is usually the minimum rating as it offers limited protection against dust. However, in areas with more substantial detritus, such as woodworking or paper manufacture, IP65 may be suitable as it allows for complete protection against ingress of solid objects. For an outdoor application, IP66 may be required to withstand heavy rain. However, if an actuator is going to see momentary immersion in water, IP67 is required.

For applications where liquid ingress is of more concern, ratings such as IP69 are more appropriate. Typically in areas such as mobile off-highway vehicles and machines that require high pressure, high temperature wash-downs then the higher IP rating is more of a requirement. Many large farm and construction equipment manufacturers have also moved to this requirement as machines are more commonly washed down with high pressure equipment.

A common misconception with IP ratings is that a higher IP rating number is automatically better. This is not necessarily the case as a device rated to IP69K does not automatically meet IP67. Equally, IP67 does not necessarily meet IP66. Each rating is designated by unique tests that are not cumulative, for example tests up to IPX6 are carried out on a static product where the water is splashed or sprayed around the product but does not get tested for submersion unlike a test for IPX7 or IPX8. The intensity of the direct spray ranges from falling drops of water through to a equivalent of a fire hose directed at the product from specific angles. Tests for IPX7 and IPX8 involve complete immersion in water, which is different to IPX6 tests that only test for direct spray. The dynamic nature of the IPX6 tests may mean it is possible for the jet of water to force its way past a seal that works well under the static loads of immersion.

With many OEMs in the mobile off-highway machinery, construction and agriculture markets, standard specifications are now calling for IP69K. One factor that is driving this increased requirement is the fact that more intelligence is also being added locally to actuators and there is concern that there is greater risk of exposing electronic components to moisture.

More intelligent actuators

Actuators used to be controlled by changing the current direction to run the actuator in and out. Although simple, this method of control leaves a number of process difficulties such as: what happens if you do not switch the actuator at end of stroke; how do you know the position of the actuator, and the need to accommodate thick cables between the control and the actuator in heavy duty applications. Over the years these problems have been addressed with solutions such as limit switches, overload clutches and overcurrent trip mechanisms to save the actuator at the end of stroke. Positioning can further be controlled using a potentiometer with encoder feedback for an absolute or calculated position. High current switching was also moved inside the actuator with low level switching outside.

Modern actuators are available with sophisticated control circuitry enabling optimized motion that is verified and safer. The intelligence within the actuator means it can provide features such as load monitoring, mid-stroke overload sensing, slow start and accurate positioning.

These intelligent actuators can be programmed internally to solve tasks, similar to a traditional actuator, or can be controlled over a communications bus by a central control system. A central control system gives great versatility and allows different application needs within the machine or machine range to be met by mechanically familiar actuators.

Actuators connected to a communications bus provide the means for a control system to monitor position, status, speed and force. Diagnostic and error information fed back to the operator can identify problems and warn if the actuator needs replacing in the near future. The internal intelligence within the actuator also replaces ancillary items such as limit switches and removes the need for large cables to be routed through the machine.  There is no need for relays and MOSFETs, no high current spikes, low power demand and lower energy used. This makes the installation more compact and gives engineers a greater freedom in design to improve areas such as ergonomics and add richer sets of features.

Having an actuator carefully controlled via a communications bus also means that it can be installed further away from the operator. This enables advanced control in harsh environments without exposing people to potentially hazardous conditions.

Manufacturing the modern actuator

As markets specify higher protection levels for actuators and require greater intelligence, what challenges does this present to manufacturers? Space is needed within the actuator to house electronics and moisture levels need to be considered with cycling temperatures, requiring a vent and seal system that can withstand necessary IP testing.

Actuators are most vulnerable when they are extended and the integrity of the seal between the housing and the rod is tested. A wipe bridge cleans as the rod moves back and forth to prevent ingress into the housing. Many specifications also call for wider temperature ranges and this impacts the choice of materials for the wiper and seal. It is difficult for manufacturers to achieve IP67 or IP69K, thus most products on the market place have a rating of IP65.

As well as tougher IP ratings, many OEMs in areas such as agriculture also require resistance to chemicals such as fertilizers, hydraulic fluids and brake fluids. These can be aggressive to plastics and metals and make the choice of seal material critical.

Manufactures like Thomson Industries offer actuators that meet IP66, IP67 and IP69K to suit such application needs. The Thomson product engineering team use extreme test conditions to verify the robustness of products such as their Max Jac® and Electrak® Throttle actuators that are designed to handle some of the harshest environments. They tests against the most commonly used chemicals to ensure seal and enclosure integrity and, especially for mobile applications; tests combine vibration, temperature cycling and chemical exposure. Thomson actuators may be customized to exact application needs, including the use of special paints or coatings to meet specific environment specifications.

Actuator manufacturers are challenged to respond to the modern requirements for more intelligent machinery and improved safety. Other trends that Thomson engineers seein combination with intelligent control and higher IP rating include requests for higher load capacities and more compact designs. These greater efficiencies further enable designers to offer more value within their machine design and a differentiated position in the market place.

Thomson actuator engineers have a 40+ year track record of listening to customers and identifying important trends. Their response to customer needs is a continuous program of research and development focussed on providing machine manufacturers with products optimized for modern market needs, without compromise on machine performance.

The Max Jac® electric linear actuator is designed to endure the harshest environments. It is rated for IP66/IP69K and has been tested for 500 hours of salt spray.

The operating temperature range of the Max Jac® stretches from -40 to +85 °C which is the greatest range of any actuator on the market.

The compact Elektrak® Throttle actuator simplifies installation, increases operator safety and can significantly reduce energy costs with superior controls optimized to dynamically manage engine speeds.

The rugged aluminum housing offers IP69K/IP67 sealing and is e-coated for corrosion resistance to make the throttle actuator virtually maintenance-free.

back to top 亚洲AV无码京香无码AV| 又嫩又硬又黄又爽的视频| 亚洲综合无码一区二区加勒此| 免费看韩国午夜福利影视| 欧美在线精品视频A| 99久久久国产精品免费无卡顿| 五月天久久久噜噜噜久久| 玩乡下黄花小处雏女| 国产精品一区二区毛卡片| 免费的成人A级毛片| 办公室里做好紧好爽| 国产精品刮毛| 国产精品自在在线午夜出白浆| 国产精品视频露脸| 亚洲中文无码线在线观看| 成人做受视频试看60秒| 亚洲日韩国产二区无码| 精品久久久久久无码专区| 成人伊人精品色XXXX视频| 波多野无码中文字幕AV专区| 精品福利一区二区三区免费视频| 精品人妻伦一二三区久久| 久久久久99精品成人片牛牛影视| 国产乱人伦偷精品视频下| 无码视频免费一区二区三区| 小雪好紧好滑好湿好爽视频| 国产播放隔着超薄丝袜进入| 老司机午夜精品视频资源| 一本一道久久综合久久| 久久夜色撩人精品国产小说| 国产色无码专区在线观看| 乱码中字在线观看一二区| 狠狠色婷婷久久综合频道毛片| 高潮喷吹一区二区在线观看| AV天堂影音先锋AV色资源网站| 久久精品中文闷骚内射| 亚洲尺码和欧洲尺码对照工具箱| 精品国产av一区二区三区| 亚洲人成色4444在线观看| 免费A级毛片无码韩国| 欧美熟妇的荡欲未删减版电影|